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The spectrum

As usual, a spectrum is an assignment

{commutative algebras} → {spaces}

Several examples:

Commutative rings: Spec(R) = {prime ideals of R}
Commutative C*-algebras: Spec(A) = {max. ideals of A}
Boolean algebra: Spec(B) = {ultrafilters of B} = Hom(B, {0, 1})

Each instance of Spec is a (contravariant) functor.

This is usually cited in the motivation for noncommutative geometry of
various flavors. . .
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A noncommutative spectrum?

Question: What is the “noncommutative space” corresponding to a
noncommutative algebra?

Why do I care?

A solution would yield a rich invariant for noncommutative rings.

Help us “see” which rings are “geometrically nice” (e.g., smooth).

Quantum modeling: what is the “phase space” of a quantum system?

To make this a rigorous problem, we should first set some ground rules:

(A) Keep the classical construction if the ring is commutative.
(Let’s not tell “commutative” geometers how to do their own job!)

(B) Make it a functorial construction.
(To ensure it’s truly geometric, and to aid computation.)
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Can we begin with a set of points?

Naive idea: Maybe we should assign to each ring a topological space and a
sheaf of noncommutative rings. But this first requires a nonempty
underlying set. . .

Challenge: Pick any noncommuative notion of “prime ideal.” I bet your
spectrum is either (i) not functorial or (ii) empty for some R 6= 0.

Were you just unlucky? Could this be fixed by choosing a different
spectrum? No!

Theorem (R., 2012): Any functor Ringop → Set whose restriction to
the full subcategory cRingop is isomorphic to Spec must assign the empty
set to Mn(C) for n ≥ 3. (Same holds for C*-algebras.)
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Proving the obstruction

Theorem: Any functor F : Ringop → Set whose restriction to cRingop is
isomorphic to Spec has F (Mn(C)) = ∅ for n ≥ 3.

Why? Suppose F (R) 6= ∅ for some R, so there exists p0 ∈ F (R).

Commutative subrings C ⊆ D ⊆ R yield “compatible” primes:

F (R)→ F (D)→ F (C )

p0 7→ pD 7→ pC = pD ∩ C

So p0 yields a subset p =
⋃
pC ⊆ R such that, for each commutative

subring C ⊆ R, we have p ∩ C ∈ Spec(C ).

Def: A subset p as above is a prime partial ideal of R, and the set of all
prime partial ideals of R is p-Spec(R). (Note: p-Spec is a functor.)
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Colorings from prime partial ideals

Thus: Every F extending Spec maps F (R) = ∅ ⇐⇒ p-Spec(R) = ∅

New goal: p-Spec(Mn(C)) = ∅ for n ≥ 3.

What if there were some p ∈ p-Spec(M3(C))?

Lemma: If q1 + q2 + q3 = I is a sum of orthogonal projections in M3(C),
then two qi lie in p, exactly one lies outside.

Observation: Any prime partial ideal induces a “010-coloring” on the
projections Proj(M3(C)) (those in p are “0” and those outside are “1”).

A surprise: This type of coloring has been studied in quantum physics!

The physical motivation was to obstruct certain “hidden-variable theories”
of Quantum Mechanics, under the assumption of “non-contextuality.”
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The Kochen-Specker Theorem

Q: (Roughly) Can all observables be simultaneously given definite values,
which are independent of the device used to measure them?

Observables: self-adjoint matrices Mn(C)sa

Definite values: function Mn(C)sa → R
“Yes-No” observable: projection p = p2 = p∗ ∈Mn(C), values {0, 1}

Def: A function f : Proj(Mn(C))→ {0, 1} is a Kochen-Specker coloring
if, whenever p1 + · · ·+ pn = In, we have f (pi ) = 0 for all but one i .

Equivalently: f is “Boolean whenever there is no uncertainty”:

1 f (0) = 0 and f (1) = 1;

2 f (p ∧ q) = f (p) ∧ f (q) and f (p ∨ q) = f (p) ∨ f (q) if p and q are
“commeasurable” (commute), with ∧ and ∨ defined by ranges.
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The Kochen-Specker Theorem

Q: (Roughly) “Can all observables be simultaneously given definite values,
independent of the device used to measure them?” No!

Kochen-Specker Theorem (1967)

There is no Kochen-Specker coloring of Proj(Mn(C)) for n ≥ 3.

(Proof used clever vector geometry to find a finite uncolorable set.)

Corollary: For n ≥ 3, p-Spec(Mn(C)) = ∅.

And as outlined above, this directly proves:

Theorem: Any functor F : Ringop → Set whose restriction to cRingop is
isomorphic to Spec has F (Mn(C)) = ∅ for n ≥ 3.
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Kochen-Specker theorem for integer matrices

What is so special about C? How about other fields? Or universally:

Q: For F as above, must F (Mn(Z)) = ∅ for n ≥ 3?

As before, reduce to the “universal” functor F = p-Spec, and a prime
partial ideal induces a Kochen-Specker coloring of idempotent matrices.

Theorem (Ben-Zvi, Ma, R.; with special thanks to Chirvasitu)

There is no Kochen-Specker coloring of Idpt(Mn(Z)) for any n ≥ 3.

Corollary: Let R be any ring, and let n ≥ 3.

There is no KS coloring of the idempotents of Mn(R).

p-Spec(Mn(R)) = ∅.

For any F extending Spec, we also have F (Mn(R)) = ∅.
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Topology without sets

We can’t find a spectrum built out of points. But there are “point-free”
ways to do topology!

topological spaces sets

“pointless” spaces

categories of sheaves

Perhaps points are the real problem, so that one of these more exotic
approaches could bypass the obstruction?
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Avoiding the obstruction with pointless topology?

Pointless topology treats spaces and sheaves purely in terms of their
lattices of open subsets, called locales, forming a category Loc

Can we avoid the obstruction by “throwing away points?” No!

Theorem (van den Berg & Heunen, 2012)

Any functor Ringop → Loc whose restriction to cRingop is isomorphic to
Spec (considered as a locale) must assign the trivial locale to Mn(R) for
any ring R with C ⊆ R and any n ≥ 3. (The same holds for C*-algebras.)

Cor: [Ben-Zvi, Ma, R.] This obstruction still holds with any ring R.

On to the next idea: The space Spec(R) has a sheaf of rings OSpec(R),
whose ring of global sections is isomorphic to R. And we can axiomatize
sheaves without a space!
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Interpreting sheaves of rings in Sh(X )

Sh(X ) as a category:

Has all finite products.

Thus, has a terminal object 1X (single point at each open).

Global sections: Γ(X ,O) = Hom(1X ,O).

Sheaf of rings O = “ring object” O in Sh(X ): zero, unity, addition,
multiplication, and negatives can be phrased as morphisms in Sh(X ):

0, 1 ∈ Hom(1X ,O), +,× ∈ Hom(O ×O,O), and − ∈ Hom(O,O),

and the axioms of an associative ring can be written as commutative
diagrams in Sh(X ).

Generalize: Replace Sh(X ) by a category X with finite products.

Global sections: For A ∈ X , we define Γ(X ,A) := HomX (1X ,A).
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Ringed categories

The following generalizes ringed spaces/locales/toposes.

Def: A ringed category is a pair (X ,OX ) where X is a category with finite
products and OX is a ring object in X .
A morphism of ringed categories f : (X ,OX )→ (Y,OY) is a pair:

1 functor f∗ : X → Y preserving finite products and global sections,

2 morphism f : OY → f∗OX of ring objects in Y.

We get a global sections functor:

Γ : RingedCatop → Ring

(X ,OX ) 7→ Γ(X ,OX ).

The goal would be to replicate Γ(Spec(R),OSpec(R)) ∼= R.
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Another obstruction

Theorem [R. 2014]: Let F : Ringop → RingedCat be a functor whose
restriction to commutative rings is isomorphic to Spec. Suppose that there
are natural homomorphisms

R → Γ(F (R))

for each ring R, which restrict to the canonical isomorphisms
R ∼= Γ(Spec(R),OSpec(R)) for commutative R.
Then for any ring k and integer n ≥ 2, the ringed category F (Mn(k)) has

Γ(F (Mn(k))) = 0.

There is also a similar obstruction if we try to view noncommutative rings
as sheaves on a noncommutative extension of the big Zariski site.
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In search of “noncommutative sets”

The obstructions suggest to me we do not yet understand discrete
noncommutative objects.

If we strip a “commutative” space of its geometry, we are left with its
underlying set. But if we strip a noncommutative space of its geometry,
then what noncommutative discrete structure remains?

{commutative algebras} Spec //
� _

��

{spaces} U // {sets}� _

��
{noncommutative algebras} // {???}

What category should fill in blank above?
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Noncommutative sets via function algebras

If we are serious about noncommutative geometry, we might expect:

{“noncommutative sets”} ↔ {suitable noncommutative algebras}

Indeed, the functor X 7→ kX yields a duality between Set and certain
topological algebras [Iovanov, Mesyan, R., 2016].

Easier for C*-algebras: The algebra of continuous functions on space X
embeds in the algebra of discrete functions as C (X ) ⊆ CX .

Q: Does C (X ) 7→ CX extend to a functor F : Cstar→ Alg, with natural
embeddings A→ F (A), for some suitable category of ∗-algebras Alg?
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Discretization of C*-algebras

Necessary condition: Applying F : Cstar→ Alg to every commutative
subalgebra C (X ) ∼= C ⊆ A induces a commuting square

A M = F (A)

C (X ) CX

φ

φC

Such φ : A→ M with factorizations φC as above is a discretization of A.

Theorems [Heunen & R., 2017]:

Every C*-algebra embeds into a non-functorial discretization.

Alg above cannot be the category of AW*-algebras.

There is a functor that discretizes all algebras embedding in
Mn(C (X )). (These are the C*-algebras that are PI algebras.)

But the general question remains open. . .
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From sets to “quantum sets”

{commutative algebras} Spec //
� _

��

{sets}� _

��
{noncommutative algebras} // {???}

Taking a cue from quantum mechanics: If X is our set of “states,” we
should also allow linear combinations of states: X ; kX = Span(X )

http://qoqms.phys.strath.ac.uk/research_qc.html
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“Quantum sets” for algebras over a field

This vector space Q = kX carries the structure of a coalgebra:

Comultiplication ∆: Q → Q ⊗ Q given by x 7→ x ⊗ x

Counit η : Q → k given by x 7→ 1

Coalgebra maps correspond to set maps: Set(X ,Y ) ∼= Coalg(kX , kY ).
Gives a full and faithful embedding Set ↪→ Coalg.

Therefore: We view a coalgebra (Q,∆, η) as a “quantum set” (over k).
Its algebra of observables is the dual algebra Obs(Q) = Q∗.

History: Coalgebras were considered as “discrete objects” by Takeuchi
(1974), and in the noncommutative context by Kontsevich-Soibelman
(noncommutative thin schemes) and Le Bruyn.
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Coalgebras in commutative geometry

Every scheme over k has an “underlying coalgebra.”

Motivating fact: The underlying set |X | of a Hausdorff space X is the
directed limit of its finite discrete subspaces.

Observe: A scheme S finite over k is of the form S ∼= Spec(B) for f.d.
algebra B. The functor S 7→ Γ(S ,OS)∗ ∼= B∗ is an equivalence

{finite schemes over k} ∼→ {f.d. cocomm. coalg’s}

Def: For a k-scheme X , the coalgebra of distributions is

Dist(X ) = lim−→ Γ(S ,OS)∗,

where S ranges over the closed subschemes of X that are finite over k.
This gives a functor Dist : Schk → Coalg.
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Local nature of distributions

It’s best to restrict to the case where X is (locally) of finite type over k .

Distributions supported at a closed point x of such X have been defined in
the literature on algebraic groups:

Dist(X , x) = lim−→(OX ,x/m
n
x)∗.

This is dual to the completion Obs(Dist(X , x)) ∼= ÔX ,x .

Theorem: Suppose X is of finite type over k , and let X0 be its set of
closed points.

1 There is an isomorphism of coalgebras Dist(X ) ∼=
⊕

x∈X0
Dist(X , x)

2 If k = k , then Dist(X ) has a subcoalgebra isomorphic to kX0.

Moral: Dist(X ) linearizes the set of closed points, and includes the formal
neighborhood of each point.
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Distributions in the affine case

Affine case: X = Spec(A) with A an affine commutative k-algebra.
Distributions given by the Sweedler dual coalgebra

Dist(X ) ∼= A◦ := lim−→(A/I )∗

where I ranges over all ideals of finite codimension.

Thesis: For “nice” affine algebras over k , then the functor A 7→ A◦ is a
suitable candidate for a quantized maximal spectrum.

“Nice” means many f.d. representations: We say A is fully residually finite
if every quotient A/I is residually finite-dimensional.

Examples:

Affine, noetherian PI algebras

In particular, lots of “quantum algebras” at roots of unity

Just infinite algebras (A/I finite-dim’l for all I 6= 0)
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Glimpses of some quantum spectra

Ex: The ring of dual numbers A = k[t]/(t2) has A◦ = kx ⊕ kε with

∆(x) = x ⊗ x and ∆(ε) = x ⊗ ε+ ε⊗ x

η(x) = 1 and η(ε) = 0

Here x is like a point and ε is “infinitesimal fuzz.”

Eisenbud & Harris, The Geometry of Schemes

This is closer to the geometers’ picture than Spec(A) = Max(A) = {pt}!
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Glimpses of some quantum spectra

Ex: The qubit is the matrix coalgebra M2 = (M2(k))◦ =
⊕2

i ,j=1 kE ij

∆(E ij) = E i1 ⊗ E 1j + E i2 ⊗ E 2j

η(E ij) = δij

There is a “disentangling” morphism from the qubit to the classical bit
Dist(Spec(k2)), roughly sending each E ii to a point and E 12,E 21 7→ 0.

But we many morphisms to the classical bit, one for every basis of k2!
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Future work

Work currently in progress:

Describing the underlying coalgebra of a “noncommutative Proj(S),”
still assuming that S has “many” f.d. representations.

Developing strategies to compute A◦

Several questions that eventually need to be addressed:

Doing geometry with coalgebras: how to “topologize” them and
define sheaves?

What is a “quantum scheme of finite type over k” in this context?

Could this approach extend to algebras that are not residually finite?

Could it even extend to rings that are not algebras over a field?

Thank you!
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